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LENGTH-CONSTRAINED CURVE DIFFUSION

JAMES MCCOY*, GLEN WHEELER, AND YUHAN WU

Abstract. We show that any initial closed curve suitably close to a circle flows under length-
constrained curve diffusion to a round circle in infinite time with exponential convergence. We

provide an estimate on the total length of time for which such curves are not strictly convex.

We further show that there are no closed translating solutions to the flow and that the only
closed rotators are circles.

1. Introduction

In a recent article [W1] the second author considered the curve diffusion flow of closed plane
curves. This flow has the fundamental property that the signed enclosed area is preserved under
the flow while the length of the evolving curve does not increase. As such the flow provides a
natural approach to the isoperimetric problem. It is also natural therefore to consider a ‘dual’
fourth order flow that preserves length of the evolving curve while the signed enclosed area does
not decrease. Such a flow may be obtained by including an appropriate globally-defined function
of time in the flow speed. Specifically, suppose γ : S1 × [0, T )→ R2 evolves by the fourth-order
curvature flow

(1) ∂⊥t γ (x, t) = h (t)− kss (x, t) ,

where kss denotes the second derivative of (scalar) curvature of γ with respect to arc length s.
As usual for geometric flow problems, we need only specify the normal component ∂⊥t γ of the
evolution of γ; any tangential component corresponds to reparametrisations of the evolving curve
(to obtain short-time existence of a family of solution curves we would fix a parametrisation by
adding a specific tangential term to (1)). To preserve length of the evolving curve γt := γ (·, t)
we take

(2) h (t) = −
∫
k2sds

2πω
,

where ω denotes the winding number of γt. One may then obtain short-time existence of a
solution to (1) using a standard fixed point argument between appropriate function spaces with
suitably smooth functions f(t) in place of h (t). For details of a similar fixed point argument (but
for a second order flow) we refer the reader to [M]; for a discussion of the different approaches
available to short-time existence for the regular curve diffusion flow see [W1] and the references
contained therein (adding f (t) term causes no difficulty as it does not change the symbol of the
differential operator).
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Writing I [γ] = L2

4πA for the isoperimetric ratio of γ and Kosc [γ] = L
∫ (
k − k

)2
ds for the

normalised oscillation of curvature, where k =
∫
kds
L is the average curvature at time t, our main

theorem is as follows

Theorem 1.1. Suppose γ0 : S1 → R2 is a regular smooth immersed closed curve with A [γ0] > 0,
length L0 and ∫

k ds = 2π.

There exists a constant K∗ > 0 such that if

Kosc [γ0] < K∗ and I [γ0] <
4π2

4π2 −K∗
then the length-constrained curve diffusion flow (1) with initial data γ0 exists for all time and
converges exponentially to a round circle with radius L0

2π .

There is a couple of other related results that may be proved similarly as in [W1]. The first
is an upper bound of the size of the set of times for which the curvature of a solution of (1) is
not strictly positive.

Proposition 1.2. Suppose γ : S1× [0, T )→ R2 solves (1) and the assumptions of Theorem 1.1.
Then

L {t ∈ [0,∞) : k (·, t) 6> 0} ≤ L2
0

4π3

(
L2
0

4π
−A0

)
where A0 denotes the initial enclosed area and k (·, t) 6> 0 means there exists an x ∈ S1 such that
k (x, t) ≤ 0.

The estimate of Proposition 1.2 is optimal in the sense that for a circle (whose image is static
under (1)) the right hand side is equal to zero.

The result that solutions with sufficiently small oscillation of curvature remain embedded for
all time applies exactly as in [W1]:

Proposition 1.3. Any solution of (1) with initial embedded curve γ0 satisfying the assumptions
of Theorem 1.1 remains embedded for all time.

Our results on self-similar closed curves evolving under (1) are as follows:

Proposition 1.4. Let γ : S1 → R2 be a smooth, closed, translating solution of (1) with circum-
ference length L0. Then γ

(
S1
)

is the stationary round circle of circumference L0.

Proposition 1.5. Let γ : S1 → R2 be a smooth, closed, rotating solution of (1) with circumfer-
ence length L0. Then γ

(
S1
)

is a standard round circle of circumference L0.

Higher order geometric evolution problems have received increasing attention in the last few
years. Particular geometric fourth order equations occur in physical problems and enjoy some
interesting applications in mathematics. We mention in particular for curves the curve diffusion
flow and L2-gradient flow of the elastic energy, and for surfaces the surface diffusion and Willmore
flows. Fourth order flows with constraints have been considered for example in [MWW, MW].
Relevant work on higher order flows of closed curves without boundary includes [DKS,EGBM+,
GI,PW,W1,W2].

The remainder of this article is organised as follows. In Section 2 we define notation, state
some key tools to be used in our analysis and provide a bound on |h (t)| via interpolation and
the evolution equations for the various geometric quantities we will need. In Section 3 we focus
on estimating the oscillation of curvature. With these results in hand in Section 4 we prove
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long-time existence and convergence to circles under the stated conditions, completing the proof
of Theorem 1.1 and 1.2. Finally in Section 5 we prove the results on self-similar solutions.

2. Preliminaries

Let γ0 : R→ R2 be a (suitably) smooth embedded (or immersed) regular curve. We say γ is
periodic with period P if there exists a vector V ∈ R2 and a positive number P such that, for
all m ∈ N,

γ (x+ P ) = γ (x) + V and ∂mx γ (x+ P ) = ∂mx γ (x) .

Here ∂mx denotes the mth iterated derivative of γ. If V = 0 then γ is closed and we may rewrite
γ : S1 → R2. The length of γ is

L [γ] =

∫ P

0

|γ′ (u)| du

and the signed enclosed area is

A [γ] = −1

2

∫ P

0

〈γ, ν〉 |γ′| du,

where ν is a unit normal vector field on γ. Throughout this article we will keep our evolving
curves γ parametrised by arc length s.

We will frequently use the following Poincaré-Sobolev-Wirtinger ‘[PSW]’ inequalities. For
proofs of these see for example Appendix A of [PW].

Lemma 2.1. Suppose f : R → R is absolutely continuous and periodic with period P . Then if∫ P
0
f (x) dx = 0 we have

(i) ∫ P

0

f2 (x) dx ≤ P 2

4π2

∫ P

0

|fx (x)|2 dx

with equality if and only if f (x) = a sin
(
2π x
P + b

)
for arbitrary constants a and b;

(ii)

‖f‖2∞ ≤
P

2π

∫ P

0

|fx (x)|2 dx.

We also need some interpolation inequalities from [DKS]. We first need to set up some notation.
For normal tensor fields S and T we denote by S ? T any linear combination of S and T . In our
setting, S and T will be simply curvature k or its arc length derivatives. Denote by Pmn (k) any
linear combination of terms of type ∂i1s k ? ∂

i2
s k ? . . . ? ∂

in
s k where m = i1 + . . . + in is the total

number of derivatives.
The following interpolation inequality for closed curves appears in [DKS].

Lemma 2.2. Let γ : I → R2 be a smooth closed curve. Then for any term Pmn (k) with n ≥ 2
that contains derivatives of k of order at most `− 1,∫

I

|Pmn (k)| ds ≤ c L1−m−n ‖k‖n−p2 ‖k‖p`,2

where p = 1
`

(
m+ 1

2n− 1
)

and c = c (`,m, n). Moreover, if m + n
2 < 2` + 1 then p < 2 and for

any ε > 0,∫
I

|Pmn (k)| ds ≤ ε
∫
I

|∂s`k|
2
ds+ c ε

−p
2−p

(∫
I

|k|2 ds
)n−p

2−p

+ c

(∫
I

|k|2 ds
)m+n−1

.
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Note that in the above, ‖·‖2 and ‖·‖m,2 denote scale-invariant norms, for example

‖k‖2 = ‖k‖0,2 = L
1
2

(∫
k2ds

) 1
2

and

‖k‖1,2 = L
1
2

(∫
k2ds

) 1
2

+ L
3
2

(∫
k2sds

) 1
2

;

of course under our particular flow the L = L0 is constant. With the exception of the statement
of this lemma and above discussion, in this paper we will use the notation ‖·‖2 to denote the
regular unscaled norms, pointing out explicit scaling factors where relevant. In our estimates
we will also allow the constants c to vary from line to line where they depend only on absolute
quantities like n, m and, for this flow L0. Of course when L0 is embedded into our constants it
is no longer possible to track scaling through the estimates.

Further, we will need the following elementary inequality that can be used to establish a
suitable bound on h in terms of the L2 norms of k and of ksn for each n ∈ N. Here and
throughout k2sn means (ksn)

2
etc, where ksn is the n-th iterated derivative of k with respect to

arclength.

Lemma 2.3. For n ∈ N, ∫
k2sn−1ds ≤

(∫
k2ds

) 1
n
(∫

k2snds

)n−1
n

.

Proof: We proceed by induction. The statement is trivial for n = 1. So assume that

(3)

∫
k2si−1ds ≤

(∫
k2ds

) 1
i
(∫

k2sids

) i−1
i

and use this to show ∫
k2sids ≤

(∫
k2ds

) 1
i+1
(∫

k2si+1ds

) i
i+1

.

By integration by parts and the Hölder inequality we have∫
k2sids = −

∫
ksi−1ksi+1ds ≤

(∫
k2si−1ds

) 1
2
(∫

k2si+1ds

) 1
2

.

Inserting on the right hand side the inductive hypothesis (3) we obtain∫
k2sids ≤

(∫
k2ds

) 1
2i
(∫

k2sids

) i−1
2i
(∫

k2si+1ds

) 1
2

in other words (∫
k2sids

) i+1
2i

≤
(∫

k2ds

) 1
2i
(∫

k2si+1ds

) 1
2

which implies ∫
k2sids ≤

(∫
k2ds

) 1
i+1
(∫

k2si+1ds

) i
i+1

as required. 2

Corollary 2.4. For each n ∈ N, the global term h (t) may be estimated as

|h (t)| ≤ 1

2π

(∫
k2ds

)1− 1
n
(∫

k2snds

) 1
n

.
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Proof: Again proceed by induction. The statement is trivially true for n = 1 from the definition
of h (t). Assume then that

(4) h (t) ≤ 1

2π

(∫
k2ds

)1− 1
i
(∫

k2sids

) 1
i

and use this to show

h (t) ≤ 1

2π

(∫
k2ds

)1− 1
i+1
(∫

k2si+1ds

) 1
i+1

.

From Lemma 2.3 we have ∫
k2sids ≤

(∫
k2ds

) 1
i+1
(∫

k2si+1ds

) i
i+1

.

Substituting this into (4) we obtain

h (t) ≤ 1

2π

(∫
k2ds

)1− 1
i

[(∫
k2ds

) 1
i+1
(∫

k2sids

) i
i+1

] 1
i

which simplifies to the required expression. 2

The following evolution equations for various geometric quantities under the flow (1) will be
used in our analysis. These are easily derived similarly as in [W1], for example.

Lemma 2.5. Under the flow (1),

(i) d
dtL [γ] = 0;

(ii) d
dtA [γ] = −h (t)L0;

(iii) d
dt

∫
k2ds = −2

∫
k2ssds+ 3

∫
k2k2sds+ h (t)

∫
k3ds;

(iv)

d

dt
Kosc = −2L0

∫
k2ssds+ 3L0

∫ (
k − k

)2
k2sds+ 6L0k

∫ (
k − k

)
k2sds

+ 2k
2
L0

∫
k2sds+ L0h (t)

[∫ (
k − k

)3
ds+ 3k

∫ (
k − k

)2
ds

]
;

(v) d
dt

∫
k2sds = −2

∫
k2s3ds+ 2

∫
k2k2ssds+ 1

3

∫
k4sds+ 5h (t)

∫
k k2sds;

(vi) d
dt

∫
k2ssds = −2

∫
k2s4ds+ 2

∫
k2k2s3ds−

∫
k2sk

2
ssds+ 7h (t)

∫
k k2ssds;

Moreover, for m ∈ N ∪ {0},
(vii) d

dt

∫
k2smds = −2

∫
k2sm+2ds+

∫
ksmP

m+2
3 (k) ds+ h (t)

∫
ksmP

m
2 (k) ds.

Here L = L0 is the constant length of the evolving curve γt.

We complete this section with a statement of short-time existence for solutions of (1).

Theorem 2.6. Suppose γ0 : S1 → R2 is a regular curve parametrised by arclength of class
C1 ∩W 2,2 with ‖k‖2 <∞. Then there exists a maximal T ∈ (0,∞] and a one-parameter family
of immersions γ : S1 × [0, T )→ R2 parametrised by arclength, smooth for t > 0 and solving (1)
with γ (·, 0) = γ0. The family is unique up to the group of invariances of the equation (1).
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3. The oscillation of curvature

As a first step, using the isoperimetric inequality, Lemma 2.1 and Lemma 2.5 we can see that
Kosc is an L1 function in time:

Lemma 3.1. If γ : S1 × [0, T )→ R2 solves (1), then

‖Kosc‖1 ≤
L2
0

2π

(
L0

4π
−A0

)
where A0 denotes the signed enclosed area of γ (·, 0).

Proof: We estimate

Kosc = L0

∫ (
k − k

)2
ds ≤ L3

0

4π2
‖ks‖22 =

L2
0

2π

dA

dt
.

It follows that

‖Kosc‖1 ≤
L2
0

2π
(A (t)−A0) ≤ L2

0

2π

(
L2
0

4π
−A0

)
where we have written A (t) = A [γt]. 2

With a little extra work we may obtain a pointwise estimate while Kosc is small. Compared
with [W1] we lose some terms since L0 is constant but we pick up two others from h (t), one of
which needs to be estimated.

Lemma 3.2. Suppose γ : S1×[0, T )→ R2 solves (1). If there exists a T ∗ such that for t ∈ [0, T ∗)
we have

Kosc (t) ≤ 2K∗

then during this time we have

Kosc (t) ≤ Kosc (0) +
16π3ω3

L2
0

(A (t)−A0) .

Proof: Beginning with the evolution equation of Lemma 2.5 (iv), we estimate using Lemma 2.1
as in [W1]

3L0

∫ (
k − k

)2
k2sds ≤

3L0

2π
Kosc ‖kss‖22

and

6L0k

∫ (
k − k

)
k2sds ≤ 6ωL0K

1
2
osc ‖kss‖

2
2 .

While we may neglect the h (t)
∫ (
k − k

)2
ds term, we estimate the other h (t) term as follows:∫

k2sds = −
∫
k kssds = −

∫ (
k − k

)
kssds ≤

(∫ (
k − k

)2
ds

) 1
2
(∫

k2ssds

) 1
2

and ∫ (
k − k

)3
ds ≤

∥∥k − k∥∥∞ ∫ (k − k)2 ds
thus

L0 h (t)

∫ (
k − k

)3
ds ≤ L0

2πω

[∫ (
k − k

)3
ds

] 3
2 ∥∥k − k∥∥∞ ‖kss‖22 ≤ L0

4π2
√

2πω
K

3
2
osc ‖kss‖

2
2 .

Using also Lemma 2.5 (ii) we obtain

(5)
d

dt
Kosc + L0

(
2− 1

4π2
√

2π ω
K

3
2
osc −

3

2π
Kosc − 6ωK

1
2
osc

)∫
k2ssds ≤

16π3ω3

L2
0

dA

dt
.
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Provided the coefficient of
∫
k2ssds remains positive on the interval [0, T ∗), that is, we take 2K∗

as the smallest positive solution of

2− 1

4π2
√

2π ω
K

3
2
osc −

3

2π
Kosc − 6ωK

1
2
osc = 0

then we obtain the result by integration in time. 2

Working similarly as in [W1] in the case ω = 1 we next show that if initially Kosc is sufficiently

small and the isoperimetric ratio I (0) =
L2

0

4πA(0) is sufficiently close to 1 then Kosc remains under

control under (1) as long as the solution exists. When ω = 1, we may estimate from the expression
in the previous proof that 2K∗ ≈ 0.09.

Proposition 3.3. Suppose γ : S1 × [0, T )→ R2 has ω = 1 and solves (1). Then if

Kosc (0) < K∗ and I (0) <
4π2

4π2 −K∗

we have that Kosc < 2K∗ for all t ∈ [0, T ).

Proof: Suppose for the sake of establishing a contradiction there exists a first time T ∗ < T for
which Kosc (t) = 2K∗. In view of Lemma 3.2 we have

Kosc (T ∗) ≤ Kosc (0) +
16π3

L2
0

(A (T ∗)−A (0)) ≤ Kosc (0) + 4π2

(
1− 1

I (0)

)
< K∗ +K∗ = 2K∗

a contradiction. We conclude that Kosc < 2K∗ for all t ∈ [0, T ). 2

4. Global existence

Similarly as in [DKS][Theorem 3.1] for the curve diffusion flow, we first show that if the
maximal existence time is finite, then the curvature must blow up in L2.

Theorem 4.1. Let γ : S1 × [0, T )→ R2 be a maximal solution of (1). If T <∞ then∫
k2ds ≥ c (T − t)−

1
4 .

Proof: We proceed similarly as in [DKS] and make the necessary adjustments. Integrating once
by parts on the second term on the right hand side of Lemma 2.5, (vii) we can ensure the highest
derivative appearing is ksm+1 and thus using Lemma 2.2 we have as in [DKS]∫

ksmP
m+2
3 (k) ds ≤ ε

∫
k2sm+2ds+ cm (ε)

(∫
k2ds

)2m+5

.

For the h (t) term we work as follows. Using Lemma 2.2 we have

∫
ksmP

m
2 (k) ds ≤ c (L0)

(∫
k2ds

)m+5
2

2m+2

(∫ k2ds

) 2m+1
2

2m+2

+

(∫
k2sm+1ds

) 2m+1
2

2m+2


= c (L0)

(∫ k2ds

) 3
2

+

(∫
k2ds

)m+5
2

2m+2
(∫

k2sm+1ds

) 2m+1
2

2m+2





8 J. MCCOY, G. WHEELER, AND Y. WU

where we have used Lemma 2.1 to estimate all the intermediate derivatives in ‖k‖m+1,2 by∫
k2sm+1ds. Applying now Lemma 2.3 on the last term we obtain∫

ksmP
m
2 (k) ds ≤ c (L0)

(∫ k2ds

) 3
2

+

(∫
k2ds

) 2m+11
4m+8

(∫
k2sm+2ds

) 2m+1
2

2m+4

 .

Using also from Lemma 2.4

h (t) ≤ 1

2π

(∫
k2ds

)m+1
m+2

(∫
k2sm+2ds

) 1
m+2

we have

h (t)

∫
ksmP

m
2 (k) ds

≤ c (L0)

(∫ k2ds

) 5m+8
2m+4

(∫
k2sm+2ds

) 1
m+2

+

(∫
k2ds

) 6m+15
4m+8

(∫
k2sm+2ds

) 2m+5
2

2m+4

 .

Importantly, above the powers of
∫
k2sm+2ds are less than 1. We now estimate each of the terms

on the right hand side using Young’s inequality to obtain

h (t)

∫
ksmP

m
2 (k) ds ≤ ε

∫
k2sm+2ds+ c

(∫
k2ds

) 5m+8
2m+2

+ c

(∫
k2ds

)2m+5

.

Substituting these estimates into Lemma 2.5, (vii) we obtain for suitably small ε

(6)
d

dt

∫
k2smds+

∫
k2sm+2ds ≤ c

(∫
k2ds

) 5m+8
2m+2

+ c

(∫
k2ds

)2m+5

.

The proof may now be completed similarly as in [DKS] restricting to the codimension 1
case (see also [W2], for example). The idea is that if on the contrary T < ∞ is maximal
but

∫
k2ds ≤ Λ < ∞ for all t < T , then the flow can be smoothly extended beyond t = T

via short-time existence, contradicting the maximality of T . Hence it must be the case that
lim supt→T

∫
k2ds→∞ if T is finite.

To determine the blow up rate observe that for m = 0 we have

d

dt

∫
k2ds ≤ c

(∫
k2ds

)4

+ c (ε)

(∫
k2ds

)5

.

Since
∫
k2ds blows up as t→ T , the power 5 term dominates leading to the given blow-up rate

by solving the ordinary differential inequality. 2

Remark: The inequality (6) above implies under the condition
∫
k2ds ≤ Λ that all curvature

derivatives are bounded in L2. This fact is used later together with integration by parts and the
Hölder inequality to obtain exponential convergence of higher curvature derivatives.

Corollary 4.2. Suppose γ : S1 × [0, T )→ R2 solves (1) and satisfies the conditions of Theorem
1.1. Then T =∞.

Proof: Suppose on the contrary that γ satisfies the conditions of Proposition 3.3 and T < ∞.
We know from Theorem 4.1 that ‖k‖22 →∞ as t→ T . Then

Kosc = L0

∫ (
k − k

)2
ds = L0 ‖k‖22 − 2π2 →∞
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as t→ T . But this contradicts Lemma 3.3. We conclude that it must be the case that T =∞.2

It remains to classify the limit as t → ∞ where γ satisfies the conditions of Proposition 3.3.
By Lemma 3.1, Kosc ∈ L1 ([0,∞)) so if we show K ′osc is bounded we may conclude Kosc → 0
and therefore limit curves are circles of circumference length L0. In view of (5), Lemma 2.5, (ii)

and (2), to show K ′osc is bounded amounts to establishing a uniform bound for ‖ks‖22.

Proposition 4.3. Suppose γ : S1 × [0,∞) → R2 solves (1) and satisfies the conditions of
Theorem 1.1. Then there exists a constant c1 > 0 depending only on γ0 such that

‖ks‖22 ≤ c1.

Proof: We use Lemma 2.5 (v) and estimate terms in terms of Kosc whose behaviour is under
control. Using integration by parts∫

k4sds = −3

∫
k k2skssds ≤

1

2

∫
k4sds+

9

2

∫
k2k2ssds

so ∫
k4sds ≤ 9

∫
k2k2ssds

and the positive non-h (t) terms may be estimated as in [W1], page 944:∫
k2k2ssds ≤

(
1

27
+
Kosc
π

)
‖ks3‖22 +

273k
8
L0Kosc

2π2
.

For the h (t) term we estimate using integration by parts∫
k2sds = −

∫ (
k − k

)
kssds ≤

[∫ (
k − k

)2
ds

] 1
2
(∫

k2ssds

) 1
2

=
K

1
2
osc

L
1
2
0

‖kss‖2

and ∫
k k2sds = −1

2

∫
k2kssds = −1

2

∫ (
k − k

)2
kssds− k

∫ (
k − k

)
kssds

≤ Kosc
2L0

‖kss‖∞ + k

[∫ (
k − k

)2
ds

] 1
2
[∫

k2ssds

] 1
2

≤ 1

2L
1
2
0

(
Kosc√

2π
+ 2K

1
2
osc

)
‖ks3‖2 .

It follows that

5h (t)

∫
k k2sds ≤

5Kosc
8π2

(
K

1
2
osc√
2π

+ 2

)
‖ks3‖22 .

Substituting these estimates into Lemma 2.5 (v) we obtain

d

dt

∫
k2sds+

[
2− 5

(
1

27
+
Kosc
π

)
− 5Kosc

8π2

(
K

1
2
osc√
2π

+ 2

)]
‖ks3‖22 ≤

5× 273k
8
L0Kosc

2π2
.

The smallness of Kosc ensures the coefficient of ‖ks3‖22 is positive (about 1.642) and the right
hand side is bounded. The proof is then completed using Lemma 2.1 and integrating. 2

We are now able to estimate length of the set of times for which k is not strictly positive.
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Proof of Theorem 1.2: Following the idea in [W1] to rearrange γ in time if necessary, we may
assume that k (·, t) 6> 0 for all t ∈ [0, t0) while k (·, t) > 0 for all t ∈ [t0,∞). Let us suppose for

the sake of establishing a contradiction that t0 >
L2

0

4π3

(
L2

0

4π −A0

)
.

Working in the interval [0, t0) we know that k has a zero therefore∫
k2ds ≤ L2

0

2π2

∫
k2sds.

Inserting this into Lemma 2.5 (ii) we estimate for almost every t ∈ [0, t0)

d

dt
A =

L0

2π

∫
k2sds ≥

π

L0

∫
k2ds ≥ 4π3

L2
0

where in the last step we used the Hölder inequality. It follows that for almost every t ∈ [0, t0),

A (t) ≥ A0 +
4π3

L2
0

t.

Taking the limit t → t0 we establish a contradiction to the isoperimetric inequality in view of
our assumption on t0. 2

To complete the proof of Theorem 1.1 it remains to show that the limit circle is unique and
convergence is exponential. Since we have convergence to circles of radius L0

2π , we can be sure

that k (x, t) ∈
[
π
L0
, 3πL0

]
say for all t ≥ t1. For such times we also have ‖k‖∞ ≤

3π
L0

.

Corollary 4.4. Suppose γ : S1×[0,∞)→ R2 solves (1) and satisfies the assumptions of Theorem
1.1. Then there exists constants c1, c2 > 0 depending only on γ0 such that

‖kss‖22 ≤ c1 e−c2t.

Proof: For all t ≥ t1, the curve γ (·, t) is convex so the h (t) term of Lemma 2.5, (vi), is negative.
For the nonnegative term we estimate∫

k2k2s3ds =

∫
k2s3
(
k − k

)2
ds+ 2 k

∫
k k2s3ds− k

2
∫
k2s3ds

≤
∫
k2s3
(
k − k

)2
ds+

1

2

∫
k2k2s3ds+ k

2
∫
k2s3ds;

absorbing on the left yields

(7)

∫
k2k2s3ds ≤ 2

∫
k2s3
(
k − k

)2
ds+ 2 k

2
∫
k2s3ds.

Now for σ1, σ2 > 0, ∫
k2s3ds = −

∫
kssks4ds ≤ σ1

∫
k2s4ds+

1

4σ1

∫
k2ssds,

∫
k2ssds = −

∫
ks3ksds =

∫
ks4kds =

∫
ks4
(
k − k

)
ds

≤ σ2
∫
k2s4ds+

1

4σ2

∫ (
k − k

)2
ds = σ2

∫
ks4ds+

1

4σ2

Kosc
L0

and using Lemma 2.1 (ii),∫
k2s3
(
k − k

)2
ds ≤ ‖ks3‖2∞

Kosc
L0

≤ Kosc
2π

∫
k2s4ds.
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Substituting into (7) yields∫
k2k2s3ds ≤

[
2k

2
(
σ1 +

σ2
4σ1

)
+
Kosc
π

] ∫
k2s4ds+

k
2

8σ1σ2

Kosc
L0

and thus from Lemma 2.5 (vi) we have

d

dt

∫
k2ssds+ 2

∫
k2s4ds ≤

[
4k

2
(
σ1 +

σ2
4σ1

)
+

2Kosc
π

] ∫
k2s4ds+

k
2

4σ1σ2

Kosc
L0

.

Since Kosc → 0 we can choose σ1 and σ2 small enough to obtain for a small δ > 0 and all
t ≥ t2 ≥ t1 that

d

dt

∫
k2ssds ≤ −δ

∫
k2s4ds+

k
2

4σ1σ2

Kosc
L0

.

Applying Lemma 2.1 (i) twice and recalling Lemma 3.1 we obtain the desired exponential con-
vergence all t ≥ t2 where t2 ≥ t1 using Grönwall’s inequality. The result can be extended to
[0,∞) by adjusting the constants. 2

Completion of the proof of Theorem 1.1: Using Corollary 4.4 with Lemma 2.1 gives in turn

exponential decay of
∫
k2sds (hence decay of h (t)) and

∫ (
k − k

)2
ds and the corresponding L∞

norms. This implies subconvergence of the flow to circles with perimeter length L0. Exponential
decay of the higher curvature derivatives follows by interpolation using the uniform bounds on∫
k2smds in the proof of Theorem 4.1 that apply since

∫
k2ds is uniformly bounded. A stability

argument may be used to obtain stronger convergence to the circle. In view of uniform conver-
gence of k, we may work from a time beyond which γ (·, t) remains convex. Then we may use
the radial graph parametrisation γ (z, t) = ρ (z, t) z for z ∈ S1 and consider the length preserving
deformations ρ (z, t) = ρ∞ + εu (z, t), where ρ∞ = L0

2π is the radius of the limiting circle. That

length is preserved corresponds to the condition
∫
γ
u dz = 0. In the radial graph parametrisation

the linearised operator is

Lu = ρ−4∞ (ux4 + uxx) .

All eigenvalues of L are negative with the exception of a single zero eigenvalues corresponding to
translations. Uniqueness of the limit then follows by Hale-Raugel’s convergence theorem [HR]. In
view of the previous results, all solutions satisfying the conditions of Theorem 1.1 thus converge
exponentially to a unique limiting circle. 2

Remark: Exponential decay of the speed allows us to bound the region of the plane in which
the solution lies relative to γ0 via standard arguments. Specifically we may bound the distance
travelled by any point on the initial curve γ0 as follows

|γ (x, t)− γ (x, 0)| =
∣∣∣∣∫ t

0

∂γ

∂t
(x, τ)

∣∣∣∣ ≤ ∫ t

0

|h (τ)− κss| dτ ≤
C

δ

(
1− e−δt

)
≤ C

δ
.

5. Self-similar solutions

A self-similar solution to a curvature flow equation such as (1) is a solution whose image
maintains the same shape as it evolves; it changes in time only by scaling, translation and/or
rotation. In the present setting the length constraint rules out expanding and contracting self-
similar solutions, so we focus here on stationary solutions, translators and rotators.

We begin with the following simple observation:

Lemma 5.1. The only smooth, closed stationary solutions to (1) are multiply-covered circles.
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Proof: Such solutions satisfy
h (t)− kss ≡ 0,

in other words
1

2π ω

∫
k2sds− kss ≡ 0.

Integrating this equation over γ we obtain

L0

2πω

∫
γ

k2sds ≡ 0

so such closed curves have ks ≡ 0 and are thus circles, whose length is controlled via the pre-
scribed L0. 2

In fact, such curves also turn out to be the only possible closed rotators under (1):

Proof of Proposition 1.5: Similarly as in [EGBM+, Section 7] but for the flow (1), curves
evolving purely by rotation must satisfy

h (t)− kss = 2S (t) 〈γ, γs〉
for some function S. Integrating this equation we obtain

L0

2π

∫
γ

k2sds = S (t)

∫
γ

d

ds
|γ|2 ds = 0,

regardless of S (t). Hence again we must have ks ≡ 0 and thus closed curves are circles. 2

Finally we consider the case of closed curves translating under (1).

Proof of Proposition 1.4: Similarly as in [EGBM+, Section 5], translators must satisfy

(8) h (t)− kss = 〈V, ν〉
for some constant vector V in the direction of translation. Integrating this equation we obtain

L0

2π

∫
γ

k2sds =

∫
γ

〈V, ν〉 ds = 0

regardless of V . Again it follows that ks ≡ 0 and thus closed curves are circles. It follows now
from (8) that in fact V ≡ 0 so the translators are actually stationary. 2
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